مدل‌سازی مکانی - زمانی خصوصیات کیفی و وضعیت تغذیه‌گرایی تالاب چغاخور با استفاده از شاخص‌های آلودگی و تکنیک‌های قطعی و زمین‌آماری GIS

نوع مقاله : مقاله پژوهشی

نویسنده

دانش آموخته مهندسـی منابع طبیعی، گروه شـیلات، دانشکده منابع طبیعی، دانشگاه صنعتی اصفهان و عضو باشگاه پژوهشگران جوان و نخبگان دانشگاه آزاد اسلامی نراق.

چکیده

مدل‌سازی آلودگی تالاب‌ها و دریاچه‌ها برای توسعه و تخصیص کاربری اراضی، مدیریت، پایش کیفیت، پیشگیری از آلودگی و حفاظت از تنوع زیستی آنها ضروری است. در این تحقیق از پارامترهای فیزیکی و شیمیایی (EC, TDS, DO, pH, NO3-, PO43-, SD, TP, TN, Chl.a)، شاخص‌های آلودگی و زیستی BMWP & TSI و مواد آلی خاک (OM)، جهت ارزیابی آلودگی و تأثیر فعالیت‌های انسانی بر کیفیت تالاب چغاخور استفاده گردید. جهت نمونه‌برداری و سنجش این پارامترها ابتدا ایستگاه‌های نمونه‌برداری به صورت غیرتصادفی و سیستماتیک انتخاب شدند. نمونه‌برداری در 12 ایستگاه از عمق 50 سانتی‌متری سطح و نزدیک بستر در 6 مرحله به فواصل زمانی 45 روزه و مکانی یک کیلومتری انجام شد. سپس مدل مکانی میانگین سطح و عمق پارامترهای کیفی، مواد آلی خاک، شاخص‌های TSI و BMWP، با استفاده از توابع درون‌یابی بر اساس تکنیک اعتبار‌سنجی متقابل (کمترین مقدار RMSE، بیشترین مقدار R2 و کمترین مقادیر MAE و MBE نزدیک به صفر داده‌های مکانی) روش‌های قطعی و زمین‌آماری در محیط GIS تهیه گردید. نتایج مدل‌سازی مکانی - زمانی سالهای (1383-1385) مشخص کرد که میزان شاخص‌های TSI، BMWP و OM به طور متوسط با مقادیر 61، 31 و 40% در وضعیت کیفی مغذی و بد می‌باشد که این میزان در نیمه جنوبی به دلیل فعالیت‌های کاربری اراضی بیشتر است. همچنین پارامترهای TSI، PO43- و DOsat از همبستگی زمانی و نیز پارامترهای BMWP، OM، TDS و عمق تالاب از همبستگی مکانی بالا و معنی‌داری برخوردار هستند. همچنین نتایج مدل‌سازی مکانی - زمانی TSI سالهای (1385-1386) مشخص کرد که تالاب در فصل بهار و پاییز دارای بیشترین میزان آلودگی (متوسط مغذی 67-70) که در نیمه جنوبی به دلیل تأثیر فعالیت‌های انسانی و کاربری اراضی در وضعیت فوق مغذی 70-74 و در فصل تابستان با متوسط مغذی 59 دارای کمترین میزان آلودگی است.

کلیدواژه‌ها


عنوان مقاله [English]

Spatial-Temporal Modeling of Qualitative Parameters and Trophic Status in Choghakhor Wetland Using Pollution Indices and GIS-based Deterministic and Geostatistical Techniques

نویسنده [English]

  • J. Samadi
Engineering Graduate of Fisheries Department, Faculty of Natural Resources, Isfahan University of Technology & Member of Young Researchers and Elite Club of Islamic Azad University, Naragh Branch, Iran.
چکیده [English]

Modeling of wetlands and lakes pollution is necessary for development and land allocation, management, water quality monitoring, prevention of pollution and conservation of biodiversity. In this study, physico-chemical parameters of EC, TDS, DO, pH, NO3-, PO43-, SD, TP, TN, and Chl.a, pollution and biological indices of TSI & BMWP and organic matters (OM) were used for assessment of pollution and anthropogenic impact on water quality in Choghakhor wetland in Chaharmahal Bakhtiari province, Iran. Sampling stations were selected on systematic non-random base for the sampling and measurement. Sampling was performed of wetland surface and in depth of 50 centimeter from 12 stations 1 kilometer in distance in six stages and in 45 day intervals. Then the spatial model of surface and depth average of qualitative parameters, soil organic matters, and TSI and BMWP indices was prepared using interpolation functions based on cross validation technique (lowest value of RMSE, highest value of R2 and lowest ​​close to zero values of spatial data MBE and MAE) of deterministic and geostatistical methods in GIS environment. The results of spatial-temporal modeling for the period of 2003 to 2005 showed that values of TSI, BMWP, and OM indices with moderate values of 61, 31 and 40% are in eutrophy and bad status and the values are higher (more pollution) in south and west half of wetland due to land use activities. Also TSI, PO43- and DOsat parameters have meaningful temporal correlations and BMWP, OM, TDS and Depth parameters has significant spatial correlations. Also results of spatial-temporal modeling of TSI (2005-2006) determined the highest pollution in spring and autumn seasons (eutrophic moderate of 67-70) which is hypertrophy of 70-74 in south half due to anthropogenic and land use impact. The value is lowest in summer season showing the lower pollution with eutrophic moderate of 59.

کلیدواژه‌ها [English]

  • Qualitative Parameters
  • Choghakhor wetland
  • BMWP
  • TSI
  • Spatial-temporal modeling
  • Spatial and temporal correlation
Abbasnejad A (2005) Pedology for geologists. Shahid Bahonar University of Kerman Press, First Edition, 535p. (In Persian)
Akbarzadeh A, Laghai H, Monavari M, Ali Nezami S, Shokrzadeh M, Saeedi saravi S (2008) Survey and determination of Anzali wetland trophic state through geographic information systems (GIS). Toxicological & Environmental Chemistry 90(6):1055-1062.
Armitage PD, Moss D, Wright JF, Furse M (1983) The performance of a new biological water quality score system based on macroinvertebrates over a wide range of unpolluted running-water sites. Water Research 17:333-347.
Ban X, Wu Q, Pan B, Du Y, Feng Q (2014) Application of composite water quality identification index on the water quality evaluation in spatial and temporal variations: a case study in Honghu lake, China. Environ Monit Assess 186(7):4237-4247.
Blackmer AM, White SE (1998) Using precision farming technologies to improve management of soil and fertilizer nitrogen. Austrian Journal of Agriculture Research 49(3):555-564.
Carlson RE (1977) A trophic state index for lakes. Limnol. Oceanogr 22(2):361–369.
DOE of Chahar-Mahal Bakhtiari (2006) Environment aspect in Chahar-Mahal Bakhtiari province. 120p (In Persian).
Ebrahimi E, Fathi cheghasiyahi P, Esmaeili ofogh A, Motaghi E (2013) Spatial and temporal changes in physicochemical properties of sediments in Choghakhor wetland. Iranian Scientific Fisheries Journal 22(1):1-12. (In Persian).
Ebrahimi S, Moshari M (2006) Evaluation of the Choghakhor wetland status with the emphasis on environmental management problems. Publs. Inst. Geophys. Pol. ACAD. SC; E-6(390):8.
Fathi P, Ebrahimi I, Mirghafari N, Esmaeili AR (2013) The assessment of water quality in Choghakhor wetland using BMWP and ASPT indices. Fisheries (Iranian Journal of Natural Resources) 66(1): 81-93 (In Persian).
Guntharee S (2003) Benthic macroinvertebrates as a biological index of water quality in the Lower Thachin river. Silpakorn University International Journal 3(1-2):168-183.
Javizadeh S, Teyebipour M, Khalaj A, Hejr A (2011) Application of geographic information system (GIS) in sustainable development of environment (with emphasis on wetlands). International Conference of Wetlands and Impress in Water Resources Integrated Management 13 (In Persian).
Kratzer CR, Brezonik PL (1981) A carlson-type trophic state index for nitrogen in Florida lakes. Water Resource Research 17(4):713–715.
Liang Y, Xiao H, Liu X, Xiong J, Li W (2015) Spatial and temporal water quality characteristics of Poyang lake migratory bird sanctuary in China. Chinese Journal of Geochemistry 34(1):38-46.
Madej M (2002) The contribution of suspended organic sediment to turbidity and sediment flux, turbidity and other sediment surrogates. Workshop, Reno, NV, 21.
Mandaville SM (2002) Benthic macroinvertebrates in freshwater- taxa tolerance values, metrics, and protocols. division of water New York State. Department of Environmental Conservation. Project H-1, 128p.
Mirzajani AR, Khodaparast H, Babaei H, Aabedini A, Dadi ghandi A (2010) Eutrophication trend of Anzali wetland based on 1992-2002 data. Environmental Studies 35(4):65-74 (In Persian).
Mousavi Nadushan R, Fatemi MR, Esmaeili sari A, Vosoughi GH (2008) Determination of trophic status and potential of fish production in lake Choghakhor. Fisheries 2(2):71-75 (In Persian).
Mousavi nadushan R, Fatemi SMR (2008) Trophic status and primary production in lake Choghakhor, Chaharmahal-Bakhtiyari province, Islamic Republic of Iran. Pakistan Journal of Biological Sciences 11(4):577-582.
Nezami Baluchi SA, Khara H, Jamalzad Fallah F, Akbarzadeh A (2007) Survey factors of water physical and chemical in Anzali wetland , it`s inlet and outlet rivers. Pajouhesh-va-Sazandegi 19(3): 76-83 (In Persian).
Pescador ML, Rasmussen AK, Harris SC (2004) Identification manual for the caddisfly (Trichoptera) larvae of Florida. Department of Environmental Protection. Florida, 237p.
Razdar B, Ghavidel A, Zovghi MJ (2009) Anzali lagoon classification using the Water Quality Index. National Conference of Sustainable Development Patterns in Water Management 457-465. (In Persian)
Samadi J (2016) Spatial-temporal modeling of groundwater level variations of urban and rural areas in Kashan aquifer using GIS techniques. Science and Environmental Technology 18(2):15p (In Persian).
Samadi J (2016) Survey of spatial-temporal impact of quantitative and qualitative of land use wastewaters on Choghakhor wetland pollution using IRWQI index and statistical methods. Iran-Water Resources Research 11(3):1-12. (In Persian)
Siska PP, Hung IK (2001) Assessment of kriging accuracy in GIS environment. Proceedings of The 21st Annual ESRI International User Conference, San Diego, CA, 6.
Su ZH, Lin C, Ma RH, Luo JH, Liang QO (2015) Effect of land use change on lake water quality in defferent buffer zones. Applied Ecology and Environmental Research 13(2):489-503.
Tiner RW (1999) Vegetation sampling and analysis for wetlands, wetland indicators: a guide to wetland identification, delineation, classification, and mapping, Boca Raton: CRC Press LLC, 248p.
Wally WJ, Hawkes HA (1997) A computer-based development of the biological monitoring working party score system incorporating abundance rating, site type and indicatore value. Water Research 31(2):201-210.
Wang Q, Wu X, Zhao B, Qin J, Peng T (2015) Combined multivariate statistical techniques, water pollution index (WPI) and Daniel trend test methods to evaluate temporal and spatial variations and trends of water quality at Shanchong river in the northwest basin of lake Fuxian, China. PloS ONE, 10(4): 17.
Wetzel RG (2001) Limnology, lake and river ecosystems, Third Ed. Academic Press, San Diego, 1006p.
Zhang T, Zeng WH, Wang SR, Ni ZK (2014) Temporal and spatial changes of water quality and management strategies of Dianchi lake in southwest China. Hydrology and Earth System Sciences 18(4):1493-1502.