توسعه رویکرد چندهدفه تلفیقی جهت بازتخصیص بهینه منابع آب در سیستم‌های کشاورزی، مطالعه موردی: حوضه آبریز زرینه‌رود

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار/ گروه مهندسی آبیاری زهکشی. دانشگاه تهران. پردیس ابوریحان

2 استادیار/ گروه مهندسی عمران. دانشکده فنی. دانشگاه شهرکرد

3 دانشجوی کارشناسی ارشد منابع آب/ دانشگاه تهران. پردیس ابوریحان

چکیده

افزایش جمعیت منجر به افزایش نیازهای آبی در بخش‌های مختلف شده است. این شرایط نیازمند اعمال راهکارهایی جهت مدیریت بهینه آب می‌باشد. در این تحقیق، مدل سه هدفه‌ایی جهت حداکثر نمودن سود اقتصادی، حداکثرسازی تأمین مطمئن نیازها آبی و حداقل‌سازی برداشت از آبخوان پنج بازه مطالعاتی حوضه زرینه‌رود تدوین گردید. در مدل پیشنهادی، آبخوان‌های تکاب، سقز، میاندوآب و صائین‌قلعه و مخزن سد زرینه‌رود به عنوان مؤلفه‌های سیستم منابع آب لحاظ گردید. بر مبنای آب تخصیصی، نیاز آبی و حداکثر عملکرد محصولات، تابع تولید تعریف و با توجه به سطح زیرکشت، منافع اقتصادی پنج بازه محاسبه شد. با استفاده از الگوریتم NSGA-II، منحنی تبادل بهینه بین اهداف که بیانگر سناریوهای مختلف کشت و تخصیص منابع آب می‌باشند، استخراج شد. از آنجا که نقاط واقع بر منحنی تبادل نمی‌تواند به طور همزمان هر سه هدف مورد اشاره را ارضا نماید، نقطه بهینه با استفاده از روش گزینش اجتماعی بردا و ترکیب روش‌های تصمیم‌گیری انتخاب گردید. مقایسه نتایج بین وضعیت تخصیص تحت شرایط موجود و بهینه نشان می‌دهد که می‌توان با اعمال مدل پیشنهادی، بطور متوسط به میزان 5/42 درصد در برداشت از منابع آب صرفه‌جویی نمود. همچنین مقایسه منافع اقتصادی حاصل از شرایط بهینه و موجود نشان می‌دهد که با اجرای سناریوی پیشنهادی می‌توان با افزایش 13 درصدی، منفعت کشاورزی را از 1137730 به 1285971 میلیارد ریال بهبود داد. نتایج این تحقیق می‌تواند در سایر حوضه‌های آبریز، جهت کاهش مصرف آب کشاورزی از منابع آب و افزایش در آمد کشاورزان از طریق بهینه‌سازی الگوی کشت مورد استفاده قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Development of Integrated Multi-Objective Strategy for Reallocation of Water Resources in Agriculture Systems; Case Study: Zarinehrood Basin

نویسندگان [English]

  • M. E Banihabib 1
  • M. Mohammad Rezapour Tabari 2
  • M. Mohammad Rezapour Tabari 3
1 Associate Professor, Dept. of Irrigation and Drainage Engineering, University college of Aburaihan, University of Tehran, Tehran, Iran,
2 Assistant Professor of civil engineering, Dept. of Engineering , Shahrkord University, Shahrekord, Iran
3 M.Sc. Student in Water Resource Engineering, Dept. of Irrigation and Drainage Engineering, University college of Aburaihan, University of Tehran, Tehran, Iran
چکیده [English]

Population growth causes an increase in different sectors water use. This increase requires new strategies for optimal water resources management. In this research, a three objective model was developed for maximization of economic benefit, maximization of reliable water supply and minimization of water withdraw from aquifers. In proposed model, aquifer and reservoir were considered as elements of water resources. Based on allocated water, water requirements, maximum yield of each product, production function were defined and economic benefits of regions in study area were determined. Using NSGA-II algorithm, Pareto trade-off curves for objective with various scenarios of cropping, economic benefit functions in Zarinehrood basin were derived. Since the points on trade-off curve cannot fully satisfy three objectives, optimal point was selected using Borda aggregation method and integration of five multicriteria decision models’ results. Result of comparison between current and optimal allocation demonstrates that we gained 42.5% water save by applying proposed model. In addition, comparison of current and optimal economic benefit showed that the benefit increased from 1,137,730 billion IRR to 1,285,971 billion IRR (13% increase). The result of this research can be used in other basins for decreasing in agricultural water use from water resources and increasing farmers’ income by optimal cropping pattern.

کلیدواژه‌ها [English]

  • Optimal cropping pattern
  • multi-objective model
  • Economic benefit
  • Optimal allocation
  • Zarinehrood
Ahmadisharaf E, Kalyanapu AJ, Chung ES (2015) Evaluating the effects of inundation duration and velocity on selection of flood management alternatives using multi-criteria decision making. Water Resources Management 29(8):2543–2561
Alinejad M, Jolaei R, Shirani bidabadi F (2015) Determine the optimum cropping pattern of Babol city using linear programming, Second National Conference on Agriculture and Natural Resources Student scientific societies, University of Tehran, Karaj (In Persian)
Banihabib ME, Hosseinzadeh M, Peralta RC (2016b) Optimization of inter-sectorial water reallocation for arid-zone megacity-dominated area. Urban Water Journal 13(8):852-860
Bolouri-Yazdeli Y, Bozorg-Haddad O, Fallah-Mehdipour E, Mari˜no MA (2014) Evaluation of real-time operation rules in reservoir systems operation. Water Resources Management 28(3):715–729
Bozdağ A (2015) Combining AHP with GIS for assessment of irrigation water quality in Cumra irrigation district (Konya), central Anatolia, Turkey. Environmental Earth Science 73(12):8217–8236
Bozorg-Haddad O, Azarnivand A, Hosseini-Moghari SM, Loáiciga HA (2016) Development of a comparative multiple criteria framework for ranking pareto optimal solutions of a multiobjective reservoir operation problem. Journal of Irrigation and Drainage Engineering, 142(7):04016019
Chávez-Morales J, Mariٌo MA, Holzapfel EA (1987) Planning model of irrigation district. Journal of Irrigation and Drainage Engineering ASCE 113: 549–564
Chen L, McPhee J, Yeh WW-G (2007) A diversified multiobjective GA for optimizing reservoir rule curve. Advances in Water Resources 30:1082–1093
Davijani MH, Banihabib ME, Nadjafzadeh Anvar A, Hashemi SR (2016) Multi-objective optimization model for the allocation of water resources in arid regions based on the maximization of socioeconomic efficiency. Water Resources Management 30(3):927-946
Deb K, Agrawal S, Pratap A, Meyarivan T (2002) A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. IEEE Trans. Evol. Comput. 6(2):182–197
Doorenbos H, Kassam AH (1979) Yield response to water, irrigation and drainage Paper No. 33. FAO: Rome; 193 pp.
Ghahraman B, Sepaskhah AR (2004) Linear and non-linear optimization models for allocation of a limited water supply. Journal of Irrigation and Drainage Engineering 124(5):138–149
Ghasemi MM, Karamouz M, Shui LT (2016) Farm-based cropping pattern optimization and conjunctive use planning using piece-wise genetic algorithm (PWGA): a case study. Modeling Earth Systems and Environment 2:25, doi:10.1007/s40808-016-0076-z
Hwang CL, Yoon K (1981) Multiple attribute decision making: Methods and applications, a state of the art survey. Springer, NewYork.
Karamouz M, Zahraie B, Kerachian R, Eslami A (2010) Crop pattern and conjunctive use management: a case study. Irrigation and Drainage 59(2):161-173
Mahjouri N, Byzhani Manzar M (2013) Waste load allocation in Zarjoub rivers: Application of Borda aggregation method and Nash bargaining function. Iran-Water Resources Research 9(3):59-74 (In Persian)
Maji CC, Heady EO (1980) Optimal reservoir management and crop planning under deterministic and stochastic inflows. Water Resources Bulletin. 16:438–443
Matanga GB, Mariٌo MA (1979) Irrigation planning: 1. Cropping pattern. Water Resources Research 15:672–678
Mohammad Rezapour Tabari M, Soltani J (2013) Multi-objective optimal model for conjunctive use management using SGAs and NSGA-II models. Water Resources Management 27(1):37–53
Mohammadi H, Sargazi A, Dehbashi D, Poudineh M (2016) Optimization of cropping pattern with an emphasis on social benefits in the rational exploitation of water (A Case Study of Fars Province). Journal of Environmental Science and Technology 17(4):107-115 (In Persian)
Panda SN, Khepar SD, Kaushal MP (1996) Inter-seasonal irrigation system planning for waterlogged sodic soils. Journal of Irrigation and Drainage Engineering ASCE 122:135–144
Raju KS, Kumar DN (2004) Irrigation planning using genetic algorithms. Water Resources Management 18(2):163-176
Ren L, Zhang Y,Wang Y, Sun Z (2007) Comparative analysis of a novel M-TOPSIS method and TOPSIS. Applied Mathematics Research eXpress 1–10
Sarker R, Ray T, (2009) An improved evolutionary algorithm for solving multi-objective crop planning models. Computers and Electronics in Agriculture 68(2):199-191
Ustinovichius L, Zavadskas EK, Podvezko V (2007) Application of a quantitative multiple criteria decision making (MCDM-1) approach to the analysis of investments in construction. Control and Cybernetics 36(1):251–268
Vedula S, Roger P (1981) Multiobjective analysis of irrigation planning in river basin development. Water Resources Research 17:1304–1310
Viteikiene M, Zavadskas EK (2007) Evaluating the sustainability of Vilnius city residential areas. Journal of Civil Engineering and Management 13(2):149-155
Yousefdost E (2015) Optimization of Cropping Pattern and agricultural water allocation in Qazvin plain using fakhteh and genetic algorithm, Msc thesis, Zabol University, College of Agriculture and Natural Resources (In Persian)
Zavadskas EK, Antucheviciene J, Razavi Hajiagha SH, Hashemi SS (2014) Extension of weighted aggregated sum product assessment withinterval-valued intuitionistic fuzzy numbers (WASPAS-IVIF). Applied Soft Computing 24:1013–1021
Zavadskas EK, Turskis Z, Antucheviciene J, Zakarevicius A (2012) Optimization of weighted aggregated sum product assessment. Elektronika ir elektrotechnika 6(122):3–6
Zeleny M (1973) Compromise programming. Multiple criteria decision making, J. L. Cochrane and M. Zeleny, ed., University of South Carolina Press, Columbia, SC